top of page

PUBLISHED WORK

Articles and Books

2025    |    2024    |    2023    |     2022    |     2021    |     2020    |     2019    |     2018    |     2017    |     2016    |     2015    |     2014    |     2013 & earlier

2025
  • S. Hallamasek, V. Freger, A.A. Lapkin, RO performance in a mixed solvent system: Analysis of nopinone concentration from a methanol-water solution, J. Membr. Sci., (2025).

  • J. Zhang, D. Semochkina, N. Sugisawa, D.C. Woods, A.A. Lapkin, Multi-objective reaction optimisation under uncertainties using expected quantile improvement, Compt. Chem. Engng., (2025).

  • ​

2024
  • Shambhawi, O. Mohan, T.S. Choksi, A.A. Lapkin, The design and optimisation of heterogeneous catalysts using computational methods, Catal. Sci. Technology., 14 (2024) 515-532. doi: 10.1039/d3cy01160g.

  • J. Zhang, N. Sugisawa, K.C. Felton, S. Fuse, A.A. Lapkin, Multi-objective Bayesian optimisation using q-noisy expected hyper volume improvement (qNEHVI) for the Schotten-Baumann reaction, React. Chem. Eng., 9 (2024) 706-712. doi: 10.1039/d3re00502j

  • D. Karan, G. Chen, N. Jose, J. Bai, P. McDaid, A.A. Lapkin, A machine learning-enabled process optimisation of ultra-fast flow chemistry with multiple reaction metrics, React. Chem. Eng., 9 (2024) 619-629. DOI: 10.1039/d3re00539a

  • J. Bai, S. Mosbach, C.J. Taylor, D. Karan, D. K.F. Lee, S.D. Rihm, J. Akroyd, A.A. Lapkin, M. Kraft, A Dynamic Knowledge Graph Approach to Distributed Self-Driving Laboratories. Nature Communications 15 (2024) 462. https://doi.org/10.1038/s41467-023-44599-9.

  • A. Chitre, J. Cheng, S. Ahamed, R.C.M. Querimit, B. Zhu, K. Wang, L. Wang, K. Hippalgaonkar, A.A. Lapkin, pHbot: Self-Driven Robot for pH Adjustment of Viscous Formulations via Physics-Informed-ML**. Chemistry–Methods 4 (2024) e202300043. https://doi.org/10.1002/cmtd.202300043.

  • D.S. Wigh, J. Arrowsmith, A. Pomberger, K.C. Felton, A.A. Lapkin, ORDerly: data sets and benchmarks for chemical reaction data, J. Chem. Inf. Model., 64 (2024) 3790-3798. DOI: 10.1021/acs.jcim.4c00292

  • C. Zhang, A. Arun, A.A. Lapkin, Completing and balancing database excerpted chemical reactions with a hybrid mechanistic-machine learning approach, ACS Omega 9 (2024) 18385-18399. DOI: 10.1021/acsomega.4c00262 

  • K.C. Felton, L. Raßpe-Lange, J.G. Rittig, K. Leonhard, A. Mitsos, J. Meyer-Kirschner, C. Knösche, A.A. Lapkin, ML-SAFT: A Machine Learning Framework for PCP-SAFT Parameter Prediction. Chem. Eng. J. (2024), 151999. doi: 10.1016/j.cej.2024.151999.

  • S. Hallamasek, V. Ubbenjans, A.A. Lapkin, Life cycle assessment of a process for paracetamol flow synthesis from bio-waste derived b-pinene, Sustain. Chem. Pharmacy. 40 (2024) 101629. doi: 10.1016/j.scp.2024.101629

  • A. Chitre, A. R.C.M. Querimit, S.D. Rihm, D. Karan, B. Zhu, K. Wang, L. Wang, K. Hippalgaonkar, A.A. Lapkin, Accelerating Formulation Design via Machine Learning: Generating a High-Throughput Shampoo Formulations Dataset. Scientific Data 2024, 11 (1), 728. doi: 10.1038/s41597-024-03573-w.

2023
  • J. Raphael Seidenberg, A. Khan, A.A. Lapkin, Boosting autonomous process design and intensification with formalised domain knowledge, Comp. Chem. Engng. 169 (2023) 108097 doi: 10.1016/j.compchemeng.2022.108097 

  • L. Cao, D. Russo, E. Matthews, A. Lapkin, D. Woods, Computer-aided design of formulated products: a bridge-design of experiments for ingredient selection, Comp. Chem. Engng. 169 (2023) 108083 doi: 10.1016/j.compchemeng.2022.108083

  • S.D. Rhim, M.K. Kovalev, A.A. Lapkin, J.W. Ager, M. Kraft, On the role of C4 and C5 products in electrochemical CO2 reduction via copper-based catalysts, Energy & Environmental Science, 16 (2023) 1697-1710; doi: 10.1039/D2EE03752A

  • J. Zakrzewski, P. Yaseneva, C.J. Taylor, M.J. Gaunt, A.A. Lapkin, A scalable palladium-catalysed C(sp3)-H carboxylation of alkyl amines in batch and continuous flow, OPRD, 27 (2023) 649-658, doi: 10.1021/acs.oprd.2c00378

  • D.S. Wigh, M. Tissot, P. Passau, J.M. Goodman, A.A. Lapkin, Quantitative in silico prediction of the rate of protodeboronation by a mechanistic DFT-aided algorithm, J. Phys. Chem. A, 127 (2023) 2628-2636, doi: 10.1021/acs.jpca.2c08250

  • A. Arun, Z. Guo, S. Sung, A.A. Lapkin, Reaction impurity prediction using a data mining approach, Chemistry Methods, 3 (2023) e2022000062. DOI: 10.1002/cmtd.202200062 (highlighted in Editor's Choice Spotlight)

  • C.J. Taylor, A. Pomberger, K.C. Felton, R. Grainger, M. Barecka, T.W. Chamberlain, R. Bourne, A.A. Lapkin, A brief introduction to chemical reaction optimisation, Chemical Reviews, 123 (2023) 3089-3126, doi: 10.1021/acs.chemrev.2c00798

  • Shambhawi, J.M. Weber, A.A. Lapkin, Micro-kinetics analysis based on partial reaction networks to compare catalysts performances for methane dry reforming reaction, Chem. Eng. J., 466 (2023) 143212; https://doi.org/10.1016/j.cej.2023.143212

  • C.J. Taylor, K.C. Felton, D. Wigh, M.I. Jeraal, R. Grainger, G. Chessari, C.N. Johnson, A.A. Lapkin, Accelerated Chemical Reaction Optimization Using Multi-Task Learning. ACS Cent Sci (2023); https://doi.org/10.1021/acscentsci.3c00050

  • M. Lu, C.N. Christensen, J.M Weber, T. Konno, N. Läubli, K. Scherer, E. Avezov, P. Lio, A.A. Lapkin, G.S. Kaminski Schierle, C.F. Kaminski, ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic reticulum topology for video-rate super-resolution imaging, Nature Methods, 20 (2023) 569-579; https://doi.org/10.1038/s41592-023-01815-0 

  • M. Barecka, P. D.S. Dameni, M.Z. Muhamad, J.W. Ager, A.A. Lapkin, Energy-efficient ethanol concentration method for scalable CO2 electrolysis, ACS Energy Lett 8 (2023) 3214-3220. DOI: 10.1021/acsenergylett.3c00973

  • A. Pomberger, N. Jose, D. Walz, J. Meissner, C. Holze, P. Muller-Bischof, A.A. Lapkin, Automated pH adjustment driven by robotic workflows and active machine learning, Chem. Eng. J., 451 (2023) 139099, doi: 10.1016/j.cej.2022.13909

  • C. Zhang, A.A. Lapkin, Reinforcement learning optimization of reaction routes on the basis of large, hybrid organic chemistry–synthetic biological, reaction network data, React. Chem. Eng. 8 (2023) 2491. DOI: 10.1039/d2re00406b​ (highlighted in OPRD: Org. Process Res. Dev. 2023, 27, 9, 1535–1545)

  • J.G. Rittig, K.C. Felton, A.A. Lapkin, A. Mitsos, Gibbs-Duhem-informed neural networks for binary activity coefficient prediction, Digital Discovery 2 (2023) 1752-1769. DOI: 10.1039/D3DD00103B

  • M.H. Barecka, M.K. Kovalev, M. Zakir, H. Ren, J.W. Ager, A.A. Lapkin, CO2 electro reduction favours carbon isotope 12C over 13C and facilitates isotope separation, iScience 26 (2023) 107834. doi: 10.1016/j.isci.2023.107834

  • T.T. Pham, Z. Guo, B. Li, A.A. Lapkin, & N. Yan, Synthesis of pyrrole-2-carboxylic acid from cellulose- and chitin-based feedstocks discovered by the automated route search. ChemSusChem n/a, e202300538 (2023). DOI: 10.1002/cssc.202300538

  • S. Zhang, V.S. Vassiliadis, Z. Hao, L. Cao, A.A. Lapkin, Heuristic optimisation of multi-task dynamic architecture neural network (DAN2), Neural Computing and Applications (2023) 35:4775–4791. DOI 10.1007/s00521-022-07851-9

  • P. Adesina, J.A. Elliott & A.A. Lapkin, Multiscale modelling of species transport in hydrophilic Nafion®-coated Cu catalysts for CO2 electro-reduction. Chemical Engineering Journal 478, 147461 (2023). 10.1016/j.cej.2023.14746

2022
  • P. Jorayev, D. Russo, J. Tibbetts, A.M. Schweidtmann, P. Deutsch, S.D. Bull, A.A. Lapkin, Multi-objective Bayesian optimisation of a two-step synthesis of p-cymene from crude sulphate turpentine, Chem. Eng. Sci., 247 (2022) 116938. DOI: 10.1016/j.ces.2021.116938

  • Y. Yan, R.J. Wong,  Z. Ma, F. Donat, S. Xi, S.  Saqline, Q. Fan, Y. Du, A. Borgna, Q. He, C.R. Müller, W. Chen, A.A. Lapkin, W. Liu, CO2 Hydrogenation to Methanol on Tungsten-Doped Cu/CeO2 Catalysts, Appl. Catal. B: Environmental, (2022) 121098, doi: 10.1016/j.apcatb.2022.121098

  • M.K. Kovalev, H. Ren, M.M. Zakir, J.W. Ager, A.A. Lapkin, Minor Product Polymerization Causes Failure of High-Current CO2-to-Ethylene Electrolyzers. ACS Energy Lett., 7 (2022) 599–601. Doi: 10.1021/acsenergylett.1c02450

  • J. Bai, L. Cao, S. Mosbach, J. Akroyd, A.A. Lapkin, M. Kraft, From platform to knowledge graph: evolution of laboratory automation, JACS Au, 10.1021/jacsau.1c00438.

  • A. Lapkin, "Can chemical reactions be encoded into algorithms and understood by computers?" https://futurumcareers.com/can-chemical-reactions-be-encoded-into-algorithms-and-understood-by-computers

  • D.S. Wigh, J.M. Goodman, A.A. Lapkin, A review of molecular representation in the age of machine learning, WIREs Comp. Mol. Sci., 2022, e1603. doi: 10.1002/wcms.1603 (Listed in Top Downloaded Articles in 2022)

  • Z. Hao, M.H. Barecka, A.A. Lapkin, Accelerating net zero from the perspective of optimising a carbon capture and utilisation system, Energy Environ. Sci., 15 (2022) 2139-2153. doi: 10.1039/D1EE03923G.

  • A.A. Khan, A.A. Lapkin, Designing the process designer: hierarchical reinforcement learning for optimisation-based process design, Chem. Eng. Process. Process Intensification, (2022) 108885. doi: 10.1016/j.cep.2022.108885

  • J.M. Weber, Z. Guo, A.A. Lapkin, Discovering circular process solutions through automated reaction network optimisation, ACS Engineering Au, 2 (2022) 333-349. doi: 10.1021/acsengineeringau.2c00002.

  • A. Pomberger, A.A. Pedrina McCarthy, A. Khan. S. Sung, C.J. Taylor, M.J. Gaunt, L. Colwell, D. Waltz, A.A. Lapkin, The effect of chemical representation on active machine learning towards closed-loop optimisation, React. Chem. Eng., 7 (2022) 1368. doi: 10.1039/d2re00008c

  • Z. Hao, C. Zhang, A.A. Lapkin, Efficient surrogates construction of chemical processes: Case studies on pressure swing adsorption and gas-to-liquids, AIChE J., 6 (2022) e17616, doi: 10.1002/aic.17616

  • G. Liu, P. Adesina, N. Nasiri, H. Wang, Y. Sheng, S. Wu, M. Kraft, A.A. Lapkin, J.W. Ager, R. Xu, Elucidating reaction pathways of the CO2 electro reduction via tailorable tortuosities and oxidation states of Cu nanostructures, Adv. Funct. Mater., (2022) 2204993. doi: 10.1002/adfm.202204993.

  • N.A. Jose, M. Kovalev, A.A. Lapkin, Double-hydroxide superstructures for high-rate supercapacitor cathodes, Energy Technologies., (2022) 2200633, doi: 10.1002/ente.202200633

  • H. Ren, M. Kovalev, Z. Weng, M.Z. Muhamad, Y. Sheng, L. Sun, J. Wang, S. Rihm, H. Ma, W. Yang, A.A. Lapkin, J.W. Ager, Operando Proton Transfer Reaction-Time of Flight-Mass Spectrometry of Carbon Dioxide Reduction Electrocatalysis, Nature Catal., 5 (2022) 1169-1179 doi: 10.1038/s41929-022-00891-3

2021
  • M.I. Jeraal, S. Sung, A.A. Lapkin, A Machine Learning-Enabled Autonomous Flow Chemistry Platform for Process Optimization of Multiple Reaction Metrics. Chemistry–Methods, 2 (2021) 71-77. https://doi.org/10.1002/cmtd.202000044

  • L. Cao, D. Russo, K. Felton, D. Salley, A. Sharma, G. Keenan, W. Mauer, H. Gao, L. Cronin, A.A. Lapkin, Optimization of Formulations Using Robotic Experiments Driven by Machine Learning DoE. Cell Reports Physical Science, 2 (2021) 100295. DOI: 10.1016/j.xcrp.2020.100295

  • M.H. Barecka, J.W. Ager, A.A. Lapkin, Economically viable CO2 electro reduction embedded within ethylene oxide manufacturing, Energy Env. Sci., 14 (2021) 1530-1543. https://doi.org/10.1039/D0EE03310C

  • K.C. Felton, J.G. Rittig, A.A. Lapkin, Summit: Benchmarking machine learning methods for reaction optimisation, Chemistry-Methods, 1 (2021) 116-122. https://doi.org/10.1002/cmtd.202000051

  • J.M Weber, C.P. Lindenmeyer, P. Lio, A.A. Lapkin, Teaching sustainability as complex systems approach: a sustainable development goals workshop, Int. J. Sustain. Edu., 22:8 (2021) 25-41. DOI: 10.1108/IJSHE-06-2020-0209 

  • J.Y. See, S. Song, Y. Xiao, Y. Zhao, A. Lapkin, N. Yan, Transformation of corn lignin into Sun cream ingredients, ChemSusChem, 14 (2021) 1586-1594. DOI: 10.1002/cssc.202002739

  • L.Cao, D. Russo, A.A. Lapkin, Automated robotic platforms in design and development of formulations, AIChE J., v67. e17248 (2021). (Top Downloaded Article in 2022) https://doi.org/10.1002/aic.17248

  • O. Mohan, Shambhawi, R. Xu, A.A. Lapkin, S.H. Mushrif, Investigating CO2 methanation on Ni and Ru: DFT assisted microkinetic analysis, ChemCatChem, 13 (2021) 1-15; DOI: 10.1002/cctc.202100073

  • M.H. Barecka, J.W. Ager, A.A. Lapkin, CO2 on-site recycling: retrofit technology for carbon neutral manufacturing, iScience v. 24 (2021) DOI: https://doi.org/10.1016/j.isci.2021.102514

  • J. Tibbetts, D. Russo, A.A. Lapkin, S. Bull, Steven, Efficient Syntheses of Biobased Terephthalic Acid, p-Toluic Acid and p-Methylacetophenone via One-Pot Catalytic Aerobic Oxidation of Monoterpene Derived bio-p-Cymene, ACS Sust. Chem. Eng., 9 (2021) 8642-8652. DOI: 10.1021/acssuschemeng.1c02605

  • N.A. Jose, M. Kovalev, E. Bradford, A.M. Schweidtmann, H.C. Zeng, A.A. Lapkin, Pushing nanomaterials up to the kilogram scale - an accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis, Chem. Eng. J., 426 (2021) 131345. DOI: 10.1016/j.cej.2021.131345

  • Z. Hao, A. Caspari, A.M. Schweidtmann, Y. Vaupel, A.A. Lapkin, A. Mhamdi, Efficient Hybrid Multiobjective Optimization of Pressure Swing Adsorption, Chem. Eng. J., 423 (2021) 130248. DOI: 10.1016/j.cej.2021.130248

  • Shambhawi, G. Csányi, A.A. Lapkin, Active learning training strategy for predicting O adsorption free energy on perovskite catalysts using inexpensive catalyst features, Chem. Methods 1 (2021) 1-8. DOI: 10.1002/cmtd.202100035.

  • J.M. Weber, Z. Guo, C. Zhang, A.M. Schweidtmann, A.A. Lapkin, Chemical data intelligence for sustainable chemistry, Chem. Soc. Rev., 50 (2021) 12013-12036; doi: 10.1039/d1cs00477h.

  • P. Fantke, C. Cinquemani, P. Yaseneva, J. De Mello, H. Schwabe, B. Ebeling, A.A. Lapkin, Transition to sustainable chemistry through digitalization, Chem 7 (2021) 2866-2882; https://doi.org/10.1016/j.chempr.2021.09.012

2020
  • C. Zhang;  Y. Amar; L. Cao; A. A. Lapkin, Solvent Selection for Mitsunobu Reaction Driven by an Active Learning Surrogate Model. Org. Process Res. Dev. 24 (2020) 2864-2873. DOI: 10.1021/acs.oprd.0c00376

  • A.A. Lapkin, Rational design of continuous flow processes for synthesis of functional molecules, in “Sustainable Nanoscale Engineering”, Eds., G. Szekely, A.G. Livingstone, Elsevier, Amsterdam, 2020. pp. 415-433. doi: 10.1016/B978-0-12-814681-1.00016-3

  • N.A. Jose, H.C. Zeng, A.A. Lapkin, Scalable and Precise Synthesis of Two-Dimensional Metal Organic Framework Nanosheets in a High Shear Annular Microreactor, Chem. Eng. J., 388 (2020) 124133; doi: 10.1016/j.cej.2020.124133

  • R.I. Slavchov, M. Salamanca, D. Russo, I. Salama, S. Mosbach, S.M. Clarke, M. Kraft, A.A Lapkin, S.V. Filip, The role of NO2 and NO in the mechanism of hydrocarbon degradation leading to carbonaceous deposits in engines, Fuel 267 (2020) 117218. doi: 10.1016/j.fuel.2020.117218

  • P. Neumann, L. Cao, D. Russo, V.S. Vassiliadis, A.A. Lapkin, A new formulation for symbolic regression to identify physico-chemical laws from experimental data, Chem. Eng. J., 387 (2020) 123412; https://doi.org/10.1016/j.cej.2019.123412

  • L. Cao, M. Kabeshov, S.V. Ley, A.A. Lapkin, In silico rationalisation of selectivity and reactivity in Pd-catalysed C-H activation reactions, Beilstein J. Org. Chem., 16 (2020) 1465-1475. DOI: 10.3762/bjoc.16.122.

  • A. Khan, A.A. Lapkin, Searching for optimal process routes: a reinforcement learning approach. Comp. Chem. Eng. 141 (2020) 107027. DOI: 10.1016/j.compchemeng.2020.107027.

  • O. Mohan, Shambhawi, A.A. Lapkin, S.H. Mushrif, Investigating methane dry reforming on Ni and B promoted Ni surfaces: DFT assisted microkinetic analysis and addressing the coking problem, Catal. Sci. Technol., 10 (2020) 6628-6643. DOI: 10.1039/D0CY00939C

  • L. Cao, D. Russo, W. Mauer, H.H. Gao, A.A. Lapkin, Machine learning-aided process design for formulated products, in Proceedings of 30th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, 48 (2020) 1789-1794, doi: 10.1016/B978-0-12-823377-1.50299-8.

2019
  • A.D. Clayton, A.M. Schweidtmann, G. Clemens, J.A. Manson, C.J. Taylor, G.C. Nino, T.W. Chamberlain, N. Kapur, A.J. Blacker, A.A. Lapkin, R.A. Bourne, Automated self-optimisation of multi-step reaction and separation processes using machine learning, Chem. Eng. J., 384 (2019) 123340. https://doi.org/10.1016/j.cej.2019.123340

  • Z. Guo, N. Yan, A.A. Lapkin, Towards circular economy: integration of bio-waste into chemical supply chain, Curr. Opinion Chem. Engngn. 26 (2019) 148-156. https://doi.org/10.1016/j.coche.2019.09.010

  • J.M. Weber, P. Lio, A. Lapkin, Identification of strategic molecules for future circular supply chains using large reaction networks, React. Chem. Eng., 4 (2019) 1969-1981, DOI: 10.1039/c9re00213h

  • X. Kan, X. Chen, Y. Shen, A.A. Lapkin, M. Kraft, C.-H. Wang, Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst, Appl. Energy, 242 (2019) 1549-1561; doi: 10.1016/j.apenergy.2019.03.176.

  • S. Chemat, S. Boudjelal, I. Malki, A. Lapkin, Biosynthesis of spathulenol and camphor stand as a competitive route to artemisinin production as revealed by a new chemometric convergence approach based on nine locations’ field-grown Artemesia annua L., Ind. Crop. Prod., 137 (2019) 521-527. DOI: 10.1016/j.indcrop.2019.05.056.

  • Y. Amar, A.M. Schweidtmann, P. Deutsch, L. Cao, A. Lapkin, Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis, Chem. Sci., 10 (2019) 6697-6706, DOI: 10.1039/c9sc01844a.

  • P. Yaseneva, N. An, M. Finn, N. Tidemann, N. Jose, A. Voutchkova-Kostal, A. Lapkin, Continuous synthesis of doped layered double hydroxides in a meso-scale flow reactor, Chem. Eng. J., 360 (2019) 190-199. doi: 10.1016/j.cej.2018.11.197

  • J.J. Varghese, L. Cao, C. Robertson, Y. Yang, L.F. Gladden, A.A. Lapkin, S.H. Mushrif, Synergistic Contribution of the Acidic Metal Oxide-Metal Couple and Solvent Environment in the Selective Hydrogenolysis of Glycerol: a Combined Experimental and Computational Study Using ReOx-Ir as the Catalyst, ACS Catal., 9 (2019) 485-503. doi: 10.1021/acscatal.8b03079

  • W. Gerlinger, J.M. Asua, T. Chaloupka, J.M.M. Faust, F. Gjertsen, S. Hamzehlou, S.O. Hauger, E. Jahns, P.J. Joy, J. Kosek, A. Lapkin, J.R. Leiza, A. Mhamdi, A. Mitsos, O. Naeem, N. Rajabalinia, P. Singstad, J. Suberu, Dynamic optimisation and non-linear model predictive control to achieve target particle morphologies, Chem. Ing. Tech., 91 (2019) 3-14, doi: 10.1002/cite.201800118.

  • N. Jose, A. Lapkin, Influence of hydrodynamics on wet syntheses of nanomaterials, in “Advanced Nanomaterials for Catalysis and Energy”, Ed. V.A. Sadykov, Elsevier, Amsterdam, 2019. pp. 29-60.

2018
  • J.W. Ager, A.A. Lapkin, Chemical storage of renewable energy, Science 360 (2018) 707-708. DOI: 10.1126/science.aat7918.

  • Y. Yan, Y. Dai, Y. Yang, A.A. Lapkin, Improved stability of Y2O3 supported Ni catalysts for CO2 methanation by precursor-determined metal-support interaction, Appl. Catal. B: Env., 237 (2018) 504-512, DOI: 10.1016/j.apcatb.2018.06.021.

  • D.I. Potemkin, D.K. Maslov, K. Loponov, P.V. Snytnikov, Y.V. Shubin, P.E. Plyusnin, D.A. Svintsitskiy, V.A. Sobyanin, A.A. Lapkin, A. A., Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis. Frontiers in Chemistry 6 (2018) 85. DOI: 10.3389/fchem.2018.00085.

  • P.-M. Jacob, A. Lapkin, Statistics of the network of organic chemistry, React. Chem. Eng., 3 (2018) 102–118. DOI: 10.1039/c7re00129k.

  • R. Milkus, C. Ness, V.V. Palyulin, J. Weber, A. Lapkin, A. Zaccone, Interpretation of the Vibrational Spectra of Glassy Polymers Using Coarse-Grained Simulations. Macromolecules 51 (2018) 1559-1572. DOI: 10.1021/acs.macromol.7b02352.

  • E. Bradford, A.M. Schweidtmann, A. Lapkin, Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm, J. Global Optim., 71 (2018). 407-438. DOI: 10.1007/s10898-018-0609-2.

  • D. Kralisch, D. Ott, A.A. Lapkin, P. Yaseneva, W. De Soete, M. Jones, N. Minkov, M. Finkbeiner, The need for innovation management and decision guidance in sustainable process design, J. Cleaner Prod., 172 (2018) 2374-2388. DOI: 10.1016/j.jclepro.2017.11.173

  • S.M. Aworinde, A.M. Schweidtmann, A.A. Lapkin, The concept of selectivity control by simultaneous attenuation of feed concentration and temperature in a microstructured reactor, Chem. Eng. J. 331 (2018) 765-776. DOI: 10.1016/j.cej.2017.09.03

  • S.M. Aworinde, K. Wang, A.A. Lapkin, Borate-assisted liquid-phase oxidation of n-pentane, Appl. Catal. A: Gen., 563 (2018) 28-42. DOI: 10.1016/j.apcata.2018.06.023

  • A.M. Schweidtmann, A.D. Clayton, N. Holmes, E. Bradford, R.A. Bourne, A.A. Lapkin, Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives, Chem. Eng. J. 352 (2018) 277-282. DOI: 10.1016/j.cej.2018.07.031

  • I. Peñafiel, A. Martínez-Lombardia, C. Godard, C. Claver, A. Lapkin, Recyclable supported Pd-NHC catalytic systems for the copper-free Sonogashira cross-coupling in flow, Sust. Chem. Pharmacy 9 (2018) 69-75 DOI: 10.1016/j.scp.2018.06.003

  • A. Lapkin, Chemical engineering science and green chemistry - the challenge of sustainability, in “Green Chemical Engineering”, v.12 Handbook of Green Chemistry, Series ed. P. Anastas, Volume ed. A. Lapkin, Wiley-VCH, 2018. pp. 1-18.

  • C.S. Horbaczewskyj, C.E. Willans, A.A. Lapkin, R.A. Bourne, An introduction to closed-loop process optimization and online analysis”, in “Green Chemical Engineering”, v.12 Handbook of Green Chemistry, Series ed. P. Anastas, Volume ed. A. Lapkin, Wiley-VCH, 2018. pp. 329-374.

  • N. Jose, H.C. Zeng, A.A. Lapkin, Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures, Nature Commun., 9 (2018) 4913. DOI: 10.1038/s41467-018-07395-4

2017
  • D. Russo, I.D. Somma, R. Marotta, G. Tomaiuolo, R. Andreozzi, S. Guido, A.A. Lapkin, Intensification of Nitrobenzaldehydes Synthesis from Benzyl Alcohol in a Microreactor, Org. Process Res. Dev., 21 (2017) 357-364. DOI: 10.1021/acs.oprd.6b00426

  • D. Helmdach, P. Yaseneva, P.K. Heer, A. Schweidtmann, A. Lapkin, A multi-objective optimisation including results of life cycle assessment in developing bio-renewable-based processes, ChemSusChem 10 (2017) 3632-3643. DOI: 10.1002/cssc.201700927.

  • A. Echtermeyer, Y. Amar, J. Zakrzewski, A. Lapkin, Self-optimisation and model-based design of experiments for developing a C–H activation flow process, Beilstein J. Org. Chem., 13 (2017) 150–163. DOI: 10.3762/bjoc.13.18

  • P.-M. Jacob, P. Yamin, C. Perez-Storey, M. Hopgood, and A.A. Lapkin, Towards automation of chemical process route selection based on data mining, Green Chem., 19 (2017) 140-152. doi: 10.1039/C6GC02482C.

  • P.-M. Jacob, T. Lan, J.M. Goodman, A.A. Lapkin, A possible extension to the RInChI as a means of providing machine readable process data, J. Chemoinformatics. 9:23 (2017). doi: 10.1186/s13321-017-0210-6.

  • A.A. Lapkin, P.K. Heer, P.-M. Jacob, M. Hutchby, W. Cunningham, S.D. Bull, M.G. Davidson. Automation of route identification and optimisation based on datamining and chemical intuition, Faraday Discussions 202 (2017) 483-496. DOI: 10.1039/C7FD00073A.

  • D.D. Plaza, V. Strobel, P.K.K.S. Heer, A.B. Sellars, S.-S. Hoong, A.J. Clark, A.A. Lapkin, Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisation, J. Chem. Technol. Biotechnol. 92 (2017) 2254-2266. DOI: 10.1002/jctb.5292

  • I. Penafiel, A. Lapkin, Flow systems for NHC catalysis, in “Science of synthesis reference library: N-heterocyclic carbenes in organic synthesis”, Eds., S.P. Nolan, C.S.J. Cazin, Georg Thieme Verlag KG, Stuttgart, New York, 2017, pp 369-394.

  • A. Lapkin, K. Loponov, G. Tomaiuolo, S. Guido, Solids in continuous flow reactors for specialty and pharmaceutical syntheses, in “Sustainable Flow Chemistry - Methods and Applications”, Ed. L. Vaccaro, Wiley, 2017.

2016
  • X. Fan,  V. Sans,  S.K. Sharma,  P.K. Plucinski,  V.A. Zaikovskii,  K. Wilson, S. R. Tennison,  A. Kozynchenko,  A.A. Lapkin, Pd/C catalysts based on synthetic carbons with bi- and tri-modal pore-size distribution: applications in flow chemistry, Catal. Sci. Technol., 6 (2016) 2387-2395. DOI: 10.1039/c5cy01401h

  • J. Zakrzhewski, A.P. Smalley, M. Kabeshov, A. Lapkin, M. Gaunt, Continuous flow synthesis and derivatization of aziridines via palladium-catalyzed C(sp3)-H activation, Angew. Chem. Int. Ed., 55 (2016) 8878-8883. DOI: 10.1002/anie.201602483

  • X. Fan, F. Xing, X. Ou, G.A. Turley, P. Denissenko, M.A. Williams, N. Batail, C. Pham, A.A. Lapkin, Microtomography-based numerical simulations of heat transfer and fluid flow through β-SiC open-cell foams for catalysis, Catal. Today (2016) http://dx.doi.org/10.1016/j.cattod.2015.12.012

  • P. Yaseneva, P. Hodgson, J. Zakrzewski, S. Falss, R.E. Meadows, A.A. Lapkin, Continuous flow Buchwald-Hartwig amination of a pharmaceutical intermediate, React. Chem. Eng., 1 (2016) 229-238. DOI: 10.1039/c5re00048c.

  • S. Falß, G. Tomaiuolo, A. Perazzo, P. Yaseneva, J. Zakrzewski, S. Guido, A. Lapkin, R. Woodward, R.E. Meadows, A Continuous Process for Buchwald-Hartwig Amination at Micro- Lab- and Multi-Kilo Scale, Org. Proc. Res. Des. 20(2) (2016) 558-567. DOI: 10.1021/acs.oprd.5b00350

  • J. Suberu, P. Yamin, R. Cornell, A. Sam, A. Lapkin, Feasibility of using 2,3,3,3-tetrafluoropropene (R1234yf) as a solvent for solid-liquid extraction of biopharmaceuticals, ACS Sustainable Chem. Eng. 4 (2016) 2559-2568. DOI: 10.1021/acssuschemeng.5b01721.

  • J. Suberu, P.S. Gromski, A. Nordon, A. Lapkin, Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar, J. Pharmaceutical and Biomed. Analysis, 117 (2016) 522-531. doi:10.1016/j.jpba.2015.10.003

2015
  • C. Houben, G. Nurumbetov, D. Haddleton, A.A. Lapkin, Feasibility of simultaneous determination of monomer concentrations and particle size in emulsion polymerization using in situ Raman spectroscopy, Ind. Eng. Chem. Res. 54 (2015) 12867-12876. DOI: dx.doi.org/10.1021/acs.iecr.5b02759

  • C. Houben, A. Lapkin, Automatic discovery and optimisation of chemical processes, Curr. Opinion in Chem. Engng., 9 (2015) 1-7. http://dx.doi.org/10.1016/j.coche.2015.07.001

  • C. Houben, N. Peremezhney, A. Zubov, J. Kosek, A.A. Lapkin, Closed-loop multi-target optimisation for discovery of new emulsion polymerisation recipes, Org. Process Res. Dev., 19 (2015) 1049-1053. DOI: 10.1021/acs.oprd.5b00210

  • C. Schotten, D. Plaza, S. Manzini, S.P. Nolan, S.V. Ley, D.L. Browne, A. Lapkin, Continuous Flow Metathesis for Direct Valorization of Food Waste: An Example of Cocoa Butter Triglyceride, ACS Sust. Chem. Eng., 3 (2015) 1453-1459. DOI: 10.1021/acssuschemeng.5b00397

  • P. Yaseneva, D. Plaza, X. Fan, K. Loponov, A. Lapkin, Synthesis of the antimalarial API artemether in a flow reactor, Catal. Today, 239 (2015) 90-96. http://dx.doi.org/10.1016/j.cattod.2014.04.014

  • L. Torrente-Marciano, D. Nielsen, R. Jackstell, M. Beller, K. Cavell, A. Lapkin, Selective telomerisation of isoprene with methanol by a heterogeneous palladium resin catalyst. Catal. Sci. Technol., 5 (2015) 1206-1212. DOI: 10.1039/c4cy01320d.

  • A. Martinez-Lombardia, J. Krinsky, I. Peñafiel, S. Castillón, K. Loponov, A. Lapkin, C. Godard, C. Claver, Heterogenization of Pd-NHC complexes onto a silica support and their application in the Suzuki-Miyaura coupling under batch and continuous flow conditions, Cat. Sci. Technol., 5 (2015) 310-319. DOI: 10.1039/c4cy00829d

2014
  • N. Peremezhney, E. Hines, A. Lapkin, C. Connaughton, Combining Gaussian processes, mutual information and a generic algorithm for multi-targeted optimisation of expensive-to-evaluate functions, Engineering Optimisation, 46 (2014) 1593-1607.

  • X. Fan, J. Restivo, J.J. Órfão, M.F.R. Pereira, A. Lapkin, The role of multi walled carbon nanotubes (MWCNTs) in catalytic ozonation of atrazine, Chemical Engineering Journal, 241 (2014) 66-76.

  • J.O. Suberu, P. Yamin, K. Leonhard, L. Song, S. Chemat, N. Sullivan, G. Barker, A. Lapkin, The effect of O-methylated flavonoids and other co-metabolites on the crystallisation and purification of artemisinin, J. Biotechnol., 171 (2014) 25-33.

  • A. Lapkin, E. Adou, B.N. Mlambo, S. Chemat, J. Suberu, A.E.C. Collis, A. Clark, G. Barker, Integrating medicinal plants extraction into a high-value biorefinery: an example of Artemisia annua L. Comptes Rendus - Chimie, 17 (2014) 232-241.

  • V. Sans, S. Glatzel, F.J. Douglas, D.A. Maclaren, A. Lapkin, L. Cronin, Non-equilibrium dynamic control of gold nanoparticle and hyperbranched nanogold assemblies, Chemical Science, 5 (2014) 1153-1157.

  • P. Yaseneva, C.F. Marti, E. Palomares, X. Fan, T. Morgan, P.S. Perez, M. Ronning, F. Huang, T. Yuranova, L. Kiwi-Minsker, S. Derrouiche, A.A. Lapkin, Efficient reduction of bromates using carbon nanofibre supported catalysts: experimental and a comparative life cycle assessment study, Chemical Engineering Journal, 248 (2014) 230-241. 

  • L. Torrente-Murciano, D.J. Nielsen, K.J. Cavell, A.A. Lapkin, Tandem isomerization/telomerization of long chain dienes, Frontiers in Chemistry, 2 (2014) Article 37, 1-5, DOI: 10.3389/fchem.2014.00037.

  • N. Peremezhney, P.-M. Jacob, A. Lapkin, Alternative methods of processing bio-feedstocks in formulated consumer products design, Frontiers in Chemistry, 2 (2014) Article 26, 1-6, DOI: 10.3389/fchem.2014.00026.

  • J.O. Suberu, I, Romero-Canelón, N. Sullivan, A.A. Lapkin, G.C. Barker, Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells, ChemMedChem, 9 (2014) 2791-2798.

  • K.N. Loponov, J. Lopes, M. Barlog, E.V. Astrova, A.V. Malkov, A.A. Lapkin, Optimization of a Scalable Photochemical Reactor for Reactions with Singlet Oxygen, Org.Proc.Res.Dev., 18 (2014) 1443-1454. dx.doi.org/10.1021/op500181z

2013
  • J.O. Suberu, A.P. Gorka, L. Jacobs, P.D. Roepe, N. Sullivan, G.C. Barker, A.A. Lapkin, Anti-Plasmodial Polyvalent Interactions in Artemisia annua L. Aqueous Extract – Possible Synergistic and Resistance Mechanisms, PLOS One 8:11 (2013) e80790.

  • J. Suberu, L. Song, S. Slade, N. Sullivan, G. Barker, A. Lapkin, A rapid method for the determination of artemisinin and its biosynthetic precursors in Artemisia annua L. crude extracts, J. Pharmaceutical and Biomedical Analysis, 84 (2013) 269-277.

  • D. Haddleton, J. Burns, C. Houben, C. Waldron, A. Anastasaki and A. Lapkin, Poly(acrylates) via SET-LRP in a continuous flow reactor, Polymer Chemistry 4 (2013) 4809-4813, DOI: 10.1039/C3PY00833A

​​

Earlier papers are affiliated with: University of Warwick, University of Bath, and Boreskov Institute of Catalysis.

Pub 2021
Pub 2020
Pub 2019
Pub 2018
Pub 2017
Pub 2016
Pub 2015
Pub 2014
2022
Publications 2023
bottom of page